प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

शीर्षों $(0,\pm 13),$ नाभियाँ $(0,±5)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$

Here, the vertices are on the $y-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ where a is the semimajor axis.

Accordingly, $a=13$ and $c=5$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 13^{2}=b^{2}+5^{2}$

$\Rightarrow 169=b^{2}+25$

$\Rightarrow b^{2}=169-25$

$\Rightarrow b=\sqrt{144}=12$

Thus, the equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$

Similar Questions

बिन्दु $(2, 3)$ से जाने वाली दीर्घवृत्त $9{x^2} + 16{y^2} = 144$ की स्पर्श रेखाओं के समीकरण हैं

माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :

  • [JEE MAIN 2023]

दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ के नाभिलम्ब की लम्बाई है

रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-

  • [JEE MAIN 2022]

एक दीर्घवृत्त के नाभिलम्ब की लम्बाई दीर्घ अक्ष की $\frac{1}{3}$ है, तो इसकी उत्केन्द्रता होगी