यदि एक दीर्घवृत्त की एक नाभि तथा संगत नियता के बीच की दूरी $8$ तथा उत्केन्द्रता $\frac{1}{2}$ हो, तो दीर्घवृत्त के लघुअक्ष की लम्बाई होगी
$3$
$4\sqrt 2 $
$6$
इनमें से कोई नहीं
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की द्विगुणित कोटि $PQ$ ,इस प्रकार है कि $OPQ$ एक समबाहु त्रिभुज है, जबकि $O$ अतिपरवलय का केन्द्र है, तब अतिपरवलय की उत्केन्द्रता $e$ संतुष्ट करती है
माना $S$ तथा $S ^{\prime}$ दीर्घवृत्त की नाभि है तथा इसके लघुअक्ष का कोई एक सिरा $B$ है। यदि त्रिभुज $S ^{\prime} BS$ एक समकोण त्रिभुज है जिसमें $\angle B =90^{\circ}$ तथा क्षेत्रफल $\left(\triangle S ^{\prime} BS \right)$ $=8$ वर्ग इकाई हो, तो दीर्घवृत्त के नाभिलम्ब की लम्बाई होगी
दीर्घवृत्त (ellipse)
$\frac{x^2}{4}+\frac{y^2}{3}=1$
पर विचार कीजिए। माना कि $H (\alpha, 0), 0<\alpha<2$, एक बिंदु (point) है। बिंदु $H$ से होती हुई एवं $y$-अक्ष के समांतर (parallel to the $y$-axis) एक सरल रेखा (straight line) दीर्घवृत्त एवं इसके सहवृत्त (auxiliary circle) को प्रथम चतुर्थांश (first quadrant) में क्रमशः बिंदुओं $E$ एवं $F$ पर प्रतिच्छेदित (intersect) करती है। बिंदु $E$ पर दीर्घवृत्त की स्पर्श रेखा (tangent) धनात्मक $x$-अक्ष को एक बिंदु $G$ पर प्रतिच्छेदित करती है। मान लिजिए कि $F$ एवं मूलबिंदु (origin) को जोड़ने वाली सरल रेखा, धनात्मक $x$-अक्ष के साथ एक कोण (angle) $\phi$ बनाती है।
$List-I$ | $List-II$ |
यदि $\phi=\frac{\pi}{4}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
यदि $\phi=\frac{\pi}{3}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($Q$) $1$ |
यदि $\phi=\frac{\pi}{6}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($R$) $\frac{3}{4}$ |
यदि $\phi=\frac{\pi}{12}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
सही विकल्प हैं :
मान्रा दीर्घवृत्त $\mathrm{E}: \mathrm{x}^2+9 \mathrm{y}^2=9$ धनात्मक $\mathrm{x}$ तथा $\mathrm{y}$ अक्षों को क्रमशः बिंदुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर काटता है। माना $E$ का दीर्घ अक्ष, वृत्त $C$ का एक व्यास है। माना बिंदुओं $\mathrm{A}$ तथा $\mathrm{B}$ से होकर जाने वाली रेखा, वृत्त $\mathrm{C}$ को बिंदु $\mathrm{P}$ पर मिलती है। यदि, त्रिभुज जिसके शीर्ष $A, P$ तथा मूल बिंदु $O$ हैं, का क्षेत्रफल $\frac{m}{n}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असहभाज्य हैं, तो $\mathrm{m}-\mathrm{n}$ बराबर है