Consider the following relations :

$(1) \,\,\,A - B = A - (A \cap B)$

$(2) \,\,\,A = (A \cap B) \cup (A - B)$

$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$

which of these is/are correct

  • A

    $1$ and $3$

  • B

    $2$ only

  • C

    $2$ and $3$

  • D

    $1$ and $2$

Similar Questions

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$

$A-(A-B)$ is 

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$A \cap C$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap \left( {B \cup D} \right)$