Consider the following relations :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
which of these is/are correct
$1$ and $3$
$2$ only
$2$ and $3$
$1$ and $2$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup C$
If $S$ and $T$ are two sets such that $S$ has $21$ elements, $T$ has $32$ elements, and $S$ $\cap \,T$ has $11$ elements, how many elements does $S\, \cup$ $T$ have?
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
Which of the following pairs of sets are disjoint
$\{ x:x$ is an even integer $\} $ and $\{ x:x$ is an odd integer $\} $
Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\varnothing$