Consider the following relations :

$(1) \,\,\,A - B = A - (A \cap B)$

$(2) \,\,\,A = (A \cap B) \cup (A - B)$

$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$

which of these is/are correct

  • A

    $1$ and $3$

  • B

    $2$ only

  • C

    $2$ and $3$

  • D

    $1$ and $2$

Similar Questions

The shaded region in the given figure is

If $X$ and $Y$ are two sets such that $n( X )=17, n( Y )=23$ and $n( X \cup Y )=38$
find $n( X \cap Y )$

If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to

If $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ then $(A \cup B) \cap C$ is

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then