Consider the following relations :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
which of these is/are correct
$1$ and $3$
$2$ only
$2$ and $3$
$1$ and $2$
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X-Y$
Let $A$ and $B$ be two sets in the universal set. Then $A - B$ equals
If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B$
Is it true that for any sets $\mathrm{A}$ and $\mathrm{B}, P(A) \cup P(B)=P(A \cup B) ?$ Justify your answer.