Consider the following relations :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
which of these is/are correct
$1$ and $3$
$2$ only
$2$ and $3$
$1$ and $2$
If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $, then
Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
$A-(A-B)$ is
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap C$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup D} \right)$