If $X$ and $Y$ are two sets such that $X \cup Y$ has $50$ elements, $X$ has $28$ elements and $Y$ has $32$ elements, how many elements does $X$ $\cap$ $Y$ have?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that

$n( X \cup Y )=50, n( X )=28, n( Y )=32$

$n( X \cap Y )=?$

By using the formula

$n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$

we find that

$ n( X \cap Y ) =n( X )+n( Y )-n( X \cup Y ) $

$=28+32-50=10 $

Alternatively, suppose $n( X \cap Y )=k,$ then

$n( X - Y )=28-k, n( Y - X )=32-k$ (by Venn diagram in Fig  )

This gives $50=n( X \cup Y )=n( X - Y )+n( X \cap Y )+n( Y - X )$

$=(28-k)+k+(32-k)$

Hence $k=10$

865-s218

Similar Questions

If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$

 

If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff

Let $A=\{1,2,3,4,5,6,7,8,9,10\}$ and $B=\{2,3,5,7\} .$ Find $A \cap B$ and hence show that $A \cap B = B$

Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$