If $X$ and $Y$ are two sets such that $X \cup Y$ has $50$ elements, $X$ has $28$ elements and $Y$ has $32$ elements, how many elements does $X$ $\cap$ $Y$ have?
Given that
$n( X \cup Y )=50, n( X )=28, n( Y )=32$
$n( X \cap Y )=?$
By using the formula
$n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$
we find that
$ n( X \cap Y ) =n( X )+n( Y )-n( X \cup Y ) $
$=28+32-50=10 $
Alternatively, suppose $n( X \cap Y )=k,$ then
$n( X - Y )=28-k, n( Y - X )=32-k$ (by Venn diagram in Fig )
This gives $50=n( X \cup Y )=n( X - Y )+n( X \cap Y )+n( Y - X )$
$=(28-k)+k+(32-k)$
Hence $k=10$
If $A \cap B = B$, then
Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is
In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement ?
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$B \cap D$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap B$