If $X$ and $Y$ are two sets such that $X \cup Y$ has $50$ elements, $X$ has $28$ elements and $Y$ has $32$ elements, how many elements does $X$ $\cap$ $Y$ have?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that

$n( X \cup Y )=50, n( X )=28, n( Y )=32$

$n( X \cap Y )=?$

By using the formula

$n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$

we find that

$ n( X \cap Y ) =n( X )+n( Y )-n( X \cup Y ) $

$=28+32-50=10 $

Alternatively, suppose $n( X \cap Y )=k,$ then

$n( X - Y )=28-k, n( Y - X )=32-k$ (by Venn diagram in Fig  )

This gives $50=n( X \cup Y )=n( X - Y )+n( X \cap Y )+n( Y - X )$

$=(28-k)+k+(32-k)$

Hence $k=10$

865-s218

Similar Questions

If $A  \cap B = B$, then

Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is

In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement ?

  • [JEE MAIN 2021]

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$B \cap D$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap B$