આપેલ સંબંધ જુઓ :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
પૈકી . . . . સત્ય છે.
$1$ અને $3$
માત્ર $2$
$2$ અને $3$
$1$ અને $ 2$
ગણ $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, તો $A \cup (B \cap C)$ મેળવો.
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap C \cap D$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $B-A$
જો $X=\{a, b, c, d\}$ અને $Y=\{f, b, d, g\},$ તો મેળવો : $X-Y$
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.