જો $A = \{x : x$ એ $4$ નો ગુણક છે$.\}$ અને $B = \{x : x$ એ $6$ નો ગુણક છે$.\}$ તો $A \cap B$ માં . . . . ના ગુણકનો સમાવેશ થાય.
$16$
$12$
$8$
$4$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-A$
$X = \{ $ રામ, ગીતા, અકબર $\} $ અને $Y = \{ $ ગીતા, ડેવિડ, અશોક $\} $ ના ગણો $X$ અને $Y$ માટે $X \cap Y$ શોધો.
વિધાન સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો : $\{2,6,10,14\}$ અને $\{3,7,11,15\}$ પરસ્પર અલગગણ છે.
સાબિત કરો કે નીચે આપેલી ચારેય શરતો સમકક્ષ છે :$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$
જો $n(A) = 3$, $n(B) = 6$ અને $A \subseteq B$. તો $A \cup B$ માં રહેલ ઘટકો મેળવો.