સુરેખ સમીકરણ સંહતિ $x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ ધ્યાને લો, જ્યાં $\lambda$, $\mu \in R$. નીચેના વિધાનો પૈકી ક્યું એક સાચું નથી ?

  • [JEE MAIN 2024]
  • A

    ને $\lambda \neq \frac{1}{2}$ અને $\mu \neq 1,15$ હોય તો સંહતિને અનન્ય ઉકેલ છે.

  • B

    ને $\lambda=\frac{1}{2}$ અને $\mu \neq 1$ હોય તો સંહિિ વિસંગત છે.

  • C

    ને $\lambda=\frac{1}{2}$ અને $\mu=15$ હોય તો સંહતિને અસંખ્યા ઉકેલો છે.

  • D

    ને $\lambda \neq \frac{1}{2}$ હોય તો સંહતિ સુસંગત છે.

Similar Questions

જો $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; તો $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ = . . .

જો $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda - 1}&{\lambda + 3}\\{\lambda + 1}&{2 - \lambda }&{\lambda - 4}\\{\lambda - 3}&{\lambda + 4}&{3\lambda }\end{array}\,} \right|$ તો $t$ ની કિમત મેળવો.

  • [IIT 1981]

જો $\lambda $ એ વાસ્તવિક સંખ્યા છે કે જેથી સુરેખ સમીકરણો  $x + y + z = 6$
 ; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ ને અનંત ઉકેલ ધરાવે છે તો $\lambda $ તો એ  .  . . દ્રીઘાત સમીકરણનું બીજ થશે.

  • [JEE MAIN 2019]

જો $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, તો . . . .

  • [IIT 1998]

સમીકરણ $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ નું સમાધાન કરતી $x$ ની પૂર્ણાંક કિમંતો મેળવો.

  • [KVPY 2019]