જો સમીકરણોની સંહતિ $kx + 2y - z = 2,$$\left( {k - 1} \right)x + ky + z = 1,x + \left( {k - 1} \right)y + kz = 3$ ને માત્ર એકજ ઉકેલ હોય તો $k$ ની શક્ય વાસ્તવિક કિમંતોની સંખ્યા મેળવો.
$0$
$1$
$2$
અનંત
જો ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ હોય તો $|A_1| + |A_2| + ..... + |A_{300}|$ મેળવો.
સમીકરણની સંહતિ $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ એ એકાકી ઉકેલ હોય તો . . . .
ધારોકે $A(-1,1)$ અને $B(2,3)$ બે બિંદૂઓ છે અને $P$ એ રેખા $A B$ ની ઉપરની બાજુ નું એવુ ચલ બિંદુ છે કે જેથી $\triangle P A B$ નું ક્ષેત્રફળ $10$ થાય. જે $\mathrm{P}$ નો બિંદુપંથ $\mathrm{a} x+\mathrm{b} y=15$ હોય, તો $5 \mathrm{a}+2 \mathrm{~b}=$ ...........
જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.
જો સુરેખ સમીકરણ સંહિતા
$x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
માટે શૂન્યેતર ઉકેલ $(x, y, z)$ જ્યાં $k \in R$ હોય તો $x +\left(\frac{ y }{ z }\right)$ ની કિમત મેળવો