Consider the two sets :

$A=\{m \in R:$ both the roots of $x^{2}-(m+1) x+m+4=0$ are real $\}$ and $B=[-3,5)$

Which of the following is not true?

  • [JEE MAIN 2020]
  • A

    $A-B=(-\infty,-3) \cup(5, \infty)$

  • B

    $A \cap B=\{-3\}$

  • C

    $B-A=(-3,5)$

  • D

    $A \cup B=R$

Similar Questions

$2n (A / B) = n (B / A)$ and $5n (A \cap B) = n (A) + 3n (B) $, where $P/Q = P \cap Q^C$ . If $n (A \cup B) \leq 10$ , then the value of $\frac{{n\ (A).n\ (B).n\ (A\  \cap\  B)}}{8}$ is 

Let $\mathrm{A}=\{\mathrm{n} \in[100,700] \cap \mathrm{N}: \mathrm{n}$ is neither a multiple of $3$ nor a multiple of 4$\}$. Then the number of elements in $\mathrm{A}$ is

  • [JEE MAIN 2024]

Let the set $C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$. Then $\sum_{(x, y) \in C}(x+y)$ is equal to

  • [JEE MAIN 2024]

If $\mathrm{S}=\{\mathrm{a} \in \mathrm{R}:|2 \mathrm{a}-1|=3[\mathrm{a}]+2\{\mathrm{a}\}\}$, where $[\mathrm{t}]$ denotes the greatest integer less than or equal to $t$ and $\{t\}$ represents the fractional part of $t$, then $72 \sum_{\mathrm{a} \in \mathrm{S}} \mathrm{a}$ is equal to....................

  • [JEE MAIN 2024]

Let $S$ be the set of all ordered pairs $(x, y)$ of positive integers satisfying the condition $x^2-y^2=12345678$. Then,

  • [KVPY 2017]