Suppose ${A_1},\,{A_2},\,{A_3},........,{A_{30}}$ are thirty sets each having $5$ elements and ${B_1},\,{B_2}, ......., B_n$ are $n$ sets each with $3$ elements. Let $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} = S$ and each elements of $S$ belongs to exactly $10$ of the $A_i's$ and exactly $9$ of the $B_j's$. Then $n$ is equal to

  • A

    $15$

  • B

    $3$

  • C

    $45$

  • D

    None of these

Similar Questions

Let $S$ be the set of all ordered pairs $(x, y)$ of positive integers satisfying the condition $x^2-y^2=12345678$. Then,

  • [KVPY 2017]

The number of elements in the set $\left\{n \in Z :\left|n^2-10 n+19\right| < 6\right\}$ is $...........$

  • [JEE MAIN 2023]

Let $A=\{n \in N: H . C . F .(n, 45)=1\}$ and Let $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$. Then the sum of all the elements of $A \cap B$ is

  • [JEE MAIN 2022]

$2n (A / B) = n (B / A)$ and $5n (A \cap B) = n (A) + 3n (B) $, where $P/Q = P \cap Q^C$ . If $n (A \cup B) \leq 10$ , then the value of $\frac{{n\ (A).n\ (B).n\ (A\  \cap\  B)}}{8}$ is 

Let $A_1, A_2, \ldots \ldots, A_m$ be non-empty subsets of $\{1,2,3, \ldots, 100\}$ satisfying the following conditions:

$1.$ The numbers $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ are distinct.

$2.$ $A_1, A_2, \ldots, A_m$ are pairwise disjoint.(Here $|A|$ donotes the number of elements in the set $A$ )Then, the maximum possible value of $m$ is

  • [KVPY 2016]