Let $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to $.....$
$832$
$412$
$963$
$123$
Let $\mathrm{A}=\{\mathrm{n} \in[100,700] \cap \mathrm{N}: \mathrm{n}$ is neither a multiple of $3$ nor a multiple of 4$\}$. Then the number of elements in $\mathrm{A}$ is
The number of elements in the set $\left\{n \in Z :\left|n^2-10 n+19\right| < 6\right\}$ is $...........$
Let $a>0, a \neq 1$. Then, the set $S$ of all positive real numbers $b$ satisfying $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ is
Let $A_1, A_2, \ldots \ldots, A_m$ be non-empty subsets of $\{1,2,3, \ldots, 100\}$ satisfying the following conditions:
$1.$ The numbers $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ are distinct.
$2.$ $A_1, A_2, \ldots, A_m$ are pairwise disjoint.(Here $|A|$ donotes the number of elements in the set $A$ )Then, the maximum possible value of $m$ is
Let the set $C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$. Then $\sum_{(x, y) \in C}(x+y)$ is equal to