If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are
$x = 1,\,\,y = 1,\,\,z = - 1$
$x = 1,\,y = - 1,\,z = 1$
$x = - 1,\,y = 1,\,z = 1$
$x = 1,\,y = 1,\,z = 1$
A highly rigid cubical block $A$ of small mass $M$ and side $L$ is fixed rigidly onto another cubical block $B$ of the same dimensions and of low modulus of rigidity $\eta $ such that the lower face of $A$ completely covers the upper face of $B$. The lower face of $B$is rigidly held on a horizontal surface. A small force $F$ is applied perpendicular to one of the side faces of $A$. After the force is withdrawn block $A$ executes small oscillations. The time period of which is given by
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |
From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is