3 and 4 .Determinants and Matrices
medium

एक $3 \times 4$ आव्युह की रचना कीजिए जिसके अवयव निम्नलिखित प्रकार से प्राप्त होते हैं:

$a_{i j}=2 i-j$

A

 $A=\left[\begin{array}{cccc}-1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ -5 & 4 & 3 & 2\end{array}\right]$

B

 $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$

C

 $A=\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 3 & 2 & 1 & 0 \\ 5 & -4 & -3 & 2\end{array}\right]$

D

 $A=\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 \\ 5 & -4 & 3 & 2\end{array}\right]$

Solution

$a_{i j}=2 i-j$,   $i=1,\,2,\,3$ and $j=1,\,2,\,3,\,4$

Thus, we have

$a_{11}=2 \times 1-1=2-1=1$

$a_{21}=2 \times 2-1=4-1=3$

$a_{31}=2 \times 3-1=6-1=5$

$a_{12}=2 \times 1-2=2-2=0$

$a_{22}=2 \times 2-2=4-2=2$

$a_{12}=2 \times 3-2=6-2=4$

$a_{13}=2 \times 1-3=2-3=-1$

$a_{2 n}=2 \times 2-3=4-3=1$

$a_{13}=2 \times 3-3=6-3=3$

$a_{14}=2 \times 1-4=2-4=-2$

$a_{24}=2 \times 2-4=4-4=0$

$a_{14}=2 \times 3-4=6-4=2$

Therefore, the required matrix is $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.