- Home
- Standard 12
- Mathematics
एक $3 \times 4$ आव्युह की रचना कीजिए जिसके अवयव निम्नलिखित प्रकार से प्राप्त होते हैं:
$a_{i j}=2 i-j$
$A=\left[\begin{array}{cccc}-1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ -5 & 4 & 3 & 2\end{array}\right]$
$A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$
$A=\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 3 & 2 & 1 & 0 \\ 5 & -4 & -3 & 2\end{array}\right]$
$A=\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 \\ 5 & -4 & 3 & 2\end{array}\right]$
Solution
$a_{i j}=2 i-j$, $i=1,\,2,\,3$ and $j=1,\,2,\,3,\,4$
Thus, we have
$a_{11}=2 \times 1-1=2-1=1$
$a_{21}=2 \times 2-1=4-1=3$
$a_{31}=2 \times 3-1=6-1=5$
$a_{12}=2 \times 1-2=2-2=0$
$a_{22}=2 \times 2-2=4-2=2$
$a_{12}=2 \times 3-2=6-2=4$
$a_{13}=2 \times 1-3=2-3=-1$
$a_{2 n}=2 \times 2-3=4-3=1$
$a_{13}=2 \times 3-3=6-3=3$
$a_{14}=2 \times 1-4=2-4=-2$
$a_{24}=2 \times 2-4=4-4=0$
$a_{14}=2 \times 3-4=6-4=2$
Therefore, the required matrix is $A=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right]$