3 and 4 .Determinants and Matrices
hard

यदि समीकरण $x^{2}+x+1=0$ का एक मूल $\alpha$ है तथा आव्यूह $A =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]$ है, तो आव्यूह $A ^{31}$ बराबर है

A

$A^3$

B

$A$

C

$A^2$

D

$I_3$

(JEE MAIN-2020)

Solution

$x^{2}+x+1=0$

$\alpha=\omega$

$\alpha^{2}=\omega^{2}$

$A=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}{1} & {1} & {1} \\ {1} & {\omega} & {\omega^{2}} \\ {1} & {\omega^{2}} & {\omega}\end{array}\right]$

$A^{2}=\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {0} & {1} \\ {0} & {1} & {0}\end{array}\right]$

$\Rightarrow \mathrm{A}^{4}=\mathrm{A}^{2} \cdot \mathrm{A}^{2}=\mathrm{I}_{3}$

$A^{31}=A^{28} . A^{3}=A^{3}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.