Derive the equation of ionization constant $({K_b})$ of weak base.
The general equation of weak base is $MOH$. The ionization of base $MOH$ can be represented by equation.
$Equilibrium : \mathrm{MOH}_{(\mathrm{aq})}+(\mathrm{aq})+\mathrm{M}_{\mathrm{aq}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
Concentration ${M}: CM \ \ 0 \ \ 0$ Change in conce. : -$\mathrm{C} \alpha+\mathrm{C} \alpha +\mathrm{C} \alpha$ Concentration at equili. in molarity :
${lcc}\mathrm{C}-\mathrm{C} \alpha $
$ (0+\mathrm{C} \alpha) \ \ (0+\mathrm{C} \alpha) $
$ =\mathrm{C}(1-\alpha) \ \ =\mathrm{C} \alpha $
$ =\mathrm{C} \alpha$
$ \text { where, } \mathrm{C}=\text { Initial concentration of base in molarity. }$
$\alpha=$ The ionization degree of base
$\therefore$ Amount of ionization $\mathrm{MOH}=\mathrm{C} \alpha$
$\therefore$ The concentration decrease in base when equilibrium is reached $=\mathrm{C} \alpha \mathrm{M}$
$\therefore$ At equilibrium concentration of $\mathrm{MOH}=(\mathrm{C}-\mathrm{C} \alpha)=\mathrm{C}(1-\alpha)$
$\quad$ Equilibrium $\left[\mathrm{M}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha \mathrm{M}$
On equilibrium reaction in solution of $\mathrm{MOH}$ base.
$\mathrm{K}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}=\left[\begin{array}{c}\text { Ionization constant } \\ \mathrm{K}_{b} \text { of weak base }\end{array}\right]$
$\therefore \mathrm{K}_{b}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{[\mathrm{MOH}]} \ldots(\mathrm{Eq} \cdot-\mathrm{i})$
and $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{b} \cdot[\mathrm{MOH}]} \quad \ldots($ Eq.-$ii$)
So, $K_{b}=\frac{(C \alpha)}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha} \quad$...(Eq.-$iii$)
This equation-($i$, $ii$) and $(iii)$ are ionization constant equations of ionic equilibrium of weak base.
A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the percentage degree of ionisation of the base ? ......$\%$
The $pH$ of $0.1$ $M$ $HCN$ solution is $5.2$ calculate ${K_a}$ of this solution.
$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
The ionization constant of phenol is $1.0 \times 10^{-10} .$ What the concentration of phenolate ion in $0.05$ $M$ solution of phenol? What will be its degree of ionization if the solution is a lso $0.01$ $M$ in sodium phenolate?