Derive the equation of ionization constant $({K_b})$ of weak base.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The general equation of weak base is $MOH$. The ionization of base $MOH$ can be represented by equation.

$Equilibrium : \mathrm{MOH}_{(\mathrm{aq})}+(\mathrm{aq})+\mathrm{M}_{\mathrm{aq}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$

Concentration ${M}: CM  \ \ 0 \ \  0$ Change in conce. : -$\mathrm{C} \alpha+\mathrm{C} \alpha  +\mathrm{C} \alpha$ Concentration at  equili. in molarity :

${lcc}\mathrm{C}-\mathrm{C} \alpha $

$  (0+\mathrm{C} \alpha) \ \  (0+\mathrm{C} \alpha)  $

$ =\mathrm{C}(1-\alpha) \ \  =\mathrm{C} \alpha $

$  =\mathrm{C} \alpha$

$ \text { where, } \mathrm{C}=\text { Initial concentration of base in molarity. }$

$\alpha=$ The ionization degree of base

$\therefore$ Amount of ionization $\mathrm{MOH}=\mathrm{C} \alpha$

$\therefore$ The concentration decrease in base when equilibrium is reached $=\mathrm{C} \alpha \mathrm{M}$

$\therefore$ At equilibrium concentration of $\mathrm{MOH}=(\mathrm{C}-\mathrm{C} \alpha)=\mathrm{C}(1-\alpha)$

$\quad$ Equilibrium $\left[\mathrm{M}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha \mathrm{M}$

On equilibrium reaction in solution of $\mathrm{MOH}$ base.

$\mathrm{K}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}=\left[\begin{array}{c}\text { Ionization constant } \\ \mathrm{K}_{b} \text { of weak base }\end{array}\right]$

$\therefore \mathrm{K}_{b}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{[\mathrm{MOH}]} \ldots(\mathrm{Eq} \cdot-\mathrm{i})$

and $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{b} \cdot[\mathrm{MOH}]} \quad \ldots($ Eq.-$ii$)

So, $K_{b}=\frac{(C \alpha)}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha} \quad$...(Eq.-$iii$)

This equation-($i$, $ii$) and $(iii)$ are ionization constant equations of ionic equilibrium of weak base.

Similar Questions

A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the  percentage degree of ionisation of the base ? ......$\%$

The $pH$ of $0.1$ $M$ $HCN$ solution is $5.2$ calculate ${K_a}$ of this solution.

$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-

Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.

[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]

The ionization constant of phenol is $1.0 \times 10^{-10} .$ What the concentration of phenolate ion in $0.05$ $M$ solution of phenol? What will be its degree of ionization if the solution is a lso $0.01$ $M$ in sodium phenolate?