Derive the equation of ionization constants ${K_a}$ of weak acids $HX$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

A weak acid $HX$ that is partially ionized in the aqueous solution. The equilibrium can be expressed by :

$\text { Equilibrium : }  \text { Concentration M : } \mathrm{HX}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{X}_{\text {(aq) }}^{-} $

$\text {Change in conce. : } -\mathrm{C} \alpha \ \ 0 \ \ \  0 $

$ \text { Concentration at }  (\mathrm{C}-\mathrm{C} \alpha)  (0+\mathrm{C} \alpha)  (0+\mathrm{C} \alpha) $

$ \text { Equili. in molarity : }  =\mathrm{C}(1-\alpha)   \mathrm{C} \alpha   \mathrm{C} \alpha $

$   =\mathrm{C} \alpha  =\mathrm{C} \alpha$

where, $\alpha=$ Extent upto which $\mathrm{HX}$ is ionized into ions.

Suppose, initial concentration of undissociated acid $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$

$\therefore \quad$ Ionized $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$

At equilibrium $[\mathrm{HX}]=(\mathrm{C}-\mathrm{C} \alpha)=\mathrm{C}(1-\alpha)$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{X}^{-}\right]=\mathrm{C} \alpha \mathrm{M}$

The equilibrium constant for the above discussed acid-dissociation equilibrium:

$\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad \therefore \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$

In $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ constant $=\mathrm{K}^{\prime}$ So,

$\quad \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K} \times \mathrm{K}^{\prime}$ new constant $\mathrm{K}_{a}$

where, $\mathrm{K}_{a}=$ Ionization constant of weak acid.

$\therefore \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HX}]} \ldots .($ Eq. $-{i})$

$\therefore \mathrm{K}_{a}=\frac{(\mathrm{C} \alpha)(\mathrm{C} \alpha)}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{\left(1-\alpha^{2}\right)} \ldots . .( Eq.-ii )$

Above equation-$(ii)$ is used for calculation of ionization constant of weak acid $HX$.

Similar Questions

The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and  $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.

Dimethyl amine ${\left( {C{H_3}} \right)_2}NH$ is weak base and its ionization constant $ 5.4 \times {10^{ - 5}}$. Calculate $\left[ {O{H^ - }} \right],\left[ {{H_3}O} \right]$, $pOH$ and $pH$ of its $0.2$ $M$ solution at equilibrium.

$K _{ a_1,}, K _{ a_2 }$ and $K _{ a_3}$ are the respective ionization constants for the following reactions $(a), (b),$ and $(c)$.

$(a)$ $H _{2} C _{2} O _{4} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{-}$

$(b)$ $HC _{2} O _{4}^{-} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{2-}$

$(c)$ $H _{2} C _{2} O _{4} \rightleftharpoons 2 H ^{+}+ C _{2} O _{4}^{2-}$

The relationship between $K_{a_{1}}, K_{ a _{2}}$ and $K_{ a _{3}}$ is given as

  • [JEE MAIN 2022]

Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is

. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )

  • [IIT 2018]