Derive the equation of ionization constants ${K_a}$ of weak acids $HX$.
A weak acid $HX$ that is partially ionized in the aqueous solution. The equilibrium can be expressed by :
$\text { Equilibrium : } \text { Concentration M : } \mathrm{HX}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{X}_{\text {(aq) }}^{-} $
$\text {Change in conce. : } -\mathrm{C} \alpha \ \ 0 \ \ \ 0 $
$ \text { Concentration at } (\mathrm{C}-\mathrm{C} \alpha) (0+\mathrm{C} \alpha) (0+\mathrm{C} \alpha) $
$ \text { Equili. in molarity : } =\mathrm{C}(1-\alpha) \mathrm{C} \alpha \mathrm{C} \alpha $
$ =\mathrm{C} \alpha =\mathrm{C} \alpha$
where, $\alpha=$ Extent upto which $\mathrm{HX}$ is ionized into ions.
Suppose, initial concentration of undissociated acid $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$
$\therefore \quad$ Ionized $\mathrm{HX}=\mathrm{C} \alpha \mathrm{M}$
At equilibrium $[\mathrm{HX}]=(\mathrm{C}-\mathrm{C} \alpha)=\mathrm{C}(1-\alpha)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{X}^{-}\right]=\mathrm{C} \alpha \mathrm{M}$
The equilibrium constant for the above discussed acid-dissociation equilibrium:
$\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad \therefore \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
In $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ constant $=\mathrm{K}^{\prime}$ So,
$\quad \mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K} \times \mathrm{K}^{\prime}$ new constant $\mathrm{K}_{a}$
where, $\mathrm{K}_{a}=$ Ionization constant of weak acid.
$\therefore \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HX}]} \ldots .($ Eq. $-{i})$
$\therefore \mathrm{K}_{a}=\frac{(\mathrm{C} \alpha)(\mathrm{C} \alpha)}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{\left(1-\alpha^{2}\right)} \ldots . .( Eq.-ii )$
Above equation-$(ii)$ is used for calculation of ionization constant of weak acid $HX$.
The $pH$ of $0.004 \,M$ hydrazine solution is $9.7 .$ Calculate its ionization constant $K_{ b }$ and $pK _{ b }$
The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.
The $pH$ of $ 0.1 \,M$ solution of a weak monoprotic acid $1\%$ ionized is
If $pK_a =\, -\,log K_a=4$ for a weak acid $HX$ and $K_a= C\alpha ^2$ then Van't Haff factor when $C = 0.01\,M$ is
The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-4}$. The $\mathrm{pH}$ of a $0.01 \ \mathrm{M}$ solution of its sodium salt is