Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$
$NH _{3}+ H _{2} O \rightarrow NH _{4}^{+}+ OH ^{-}$
$K_{ b }=\left[ NH _{4}^{+}\right]\left[ OH ^{-}\right] /\left[ NH _{3}\right]=1.77 \times 10^{-5}$
Before neutralization,
$\left[ NH _{4}^{+}\right]=\left[ OH ^{-}\right]= x$
$\left[ {N{H_3}} \right] = 0.10 - x \simeq 0.10$
$x^{2} / 0.10=1.77 \times 10^{-5}$
Thus, $x=1.33 \times 10^{-3}=\left[ OH ^{-}\right]$
Therefore, $\left[ H ^{+}\right]=K_{ w } /\left[ OH ^{-}\right]=10^{-14} /$ $\left(1.33 \times 10^{-3}\right)=7.51 \times 10^{-12}$
$p H=-\log \left(7.5 \times 10^{-12}\right)=11.12$
On addition of $25 \,mL$ of $0.1 \,M$ $HCl$ solution (i.e., $2.5$ $m\,mol$ of $HCl$ ) to $50$ $mL$ of $0.1 \,M$ ammonia solution (i.e., $5 \,m\,mol$ of $NH _{3}$, $2.5 \,m\,mol$ of ammonia molecules are neutralized. The resulting $75\, mL$ solution contains the remaining unneutralized $2.5 \,m\,mol$ of $NH _{3}$ molecules and $2.5 \,m\,mol$ of $NH _{4}^{+}$
$NH _{3}+ HCl \rightarrow NH _{4}^{+}+ Cl ^{-}$
$2.5$ $2.5$ $0$ $0$
At equilibrium
$0$ $0$ $2.5$ $2.5$
The resulting $75$ $mL$ of solution contains $2.5 \,m\,mol$ of $NH _{4}^{+}$ ions (i.e., $0.033 \,M$ ) and $2.5 \,m\,mol$ (i.e.. $0.033\, M$ ) of uneutralised $NH _{3}$ molecules. This $NH _{3}$ exists in the following equilibrium:
$NH _{4} OH \quad \rightleftharpoons \quad NH _{4}^{+}+\quad OH ^{-}$
$0.033\,M-y$ $y$ $y$
where, $y=\left[ OH ^{\top}\right]=\left[ NH _{4}^{+}\right]$
The final $75$ $mL$ solution after neutralisation already contains $2.5 \,m\, mol \,NH _{4}^{+}$ ions (i.e. $0.033 \,M$ ), thus total concentration of $NH _{4}^{+}$ ions is given as:
$\left[ NH _{4}^{+}\right]=0.033+ y$
As y is small, $\left[ {N{H_4}OH} \right] \simeq 0.033\,M$ and $\left[ {NH_4^ + } \right] \simeq 0.033\,M$
$K_{ b }=\left[ NH _{4}^{+}\right][ OH ] /\left[ NH _{4} OH \right]$
$=y(0.033) /(0.033)=1.77 \times 10^{-5} \,M$
Thus, $y=1.77 \times 10^{-5}=\left[O H^{-}\right]$
$\left[H^{+}\right]=10^{-14} / 1.77 \times 10^{-5}=0.56 \times 10^{-9}$
Hence, $p H=9.24$
The $pH$ of $ 0.1 \,M$ solution of a weak monoprotic acid $1\%$ ionized is
The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is
. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )
The ionisation constant of acetic acid is $1.8 \times 10^{-5}$. The concentration at which it will be dissociated to $2\%$, is
The first and second dissociation constants of an acid $H_2A$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$ respectively. The overall dissociation constant of the acid will be
$pH$ of $0.1\,\, M$ $N{H_3}$ aqueous solution is $({K_b} = 1.8 \times {10^{ - 5}})$