Discuss the factors affecting acid strength by examples.
At experimentally, the strength of acid base decided by the value of $\mathrm{pH}$.
Theoretically the extent of dissociation of an acid depends on the strength and polarity of the $\mathrm{H}$ - $A$ bond. i.e. $\left[\mathrm{H}^{+}\right]$and strength will be decide.
$(i)$ When strength of $\mathrm{H}-\mathrm{A}$ bond decreases, that is, the energy required to break bond decreases, $HA$ becomes a stronger acid.
$(ii)$ When the $\mathrm{H}-\mathrm{A}$ bond becomes more polar, i.e. the electronegativity difference between the atoms $\mathrm{H}$ and A increases and there is marked charge separation, clavate of the bond becomes easier there by increasing the acidic. Thus, polarity of bond $\alpha$ difference of electronegativity $\alpha$ Acidity.
$(iii)$ The strength of $\mathrm{H}-\mathrm{A}$ in only one period : In the row of the periodic table, $\mathrm{H}-\mathrm{A}$ bond polarity becomes the deciding factor for determining the acid strength. As the electronegativity of a increases, the strength of acid also increases. For example, $\rightarrow$ Electronegativity A increases $\rightarrow \mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF} \rightarrow$ Acid strength increases $\rightarrow$ The acidic strength in group : In the group of the periodic table, $H$ - $A$ bond strength is a more important factor in determining acidity than its polar nature. As the size of $\mathrm{A}$ increases down the group. $\mathrm{H}-\mathrm{A}$ bond strength decreases and so the acid strength increases. For example,
$\rightarrow$ Size increases of $\mathrm{A} \rightarrow \mathrm{HF} \ll \mathrm{HCl} \ll \mathrm{HBr} \ll \mathrm{HI} \rightarrow$ Acid strength increases $\rightarrow$
Determine the degree of ionization and $pH$ of a $0.05 \,M$ of ammonia solution. The ionization constant of ammonia can be taken from Table $7.7 .$ Also, calculate the ionization constant of the conjugate acid of ammonia.
What is the $pH$ of the resulting solution when equal volumes of $0.1\, M\, NaOH$ and $0.01\, M\, HCl$ are mixed?
The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-4}$. The $\mathrm{pH}$ of a $0.01 \ \mathrm{M}$ solution of its sodium salt is
The ionization constant of $0.1$ $M$ weak acid is $1.74 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate $pH$ of its $0.1$ $M$ solution.
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)