Discuss the factors affecting acid strength by examples.
At experimentally, the strength of acid base decided by the value of $\mathrm{pH}$.
Theoretically the extent of dissociation of an acid depends on the strength and polarity of the $\mathrm{H}$ - $A$ bond. i.e. $\left[\mathrm{H}^{+}\right]$and strength will be decide.
$(i)$ When strength of $\mathrm{H}-\mathrm{A}$ bond decreases, that is, the energy required to break bond decreases, $HA$ becomes a stronger acid.
$(ii)$ When the $\mathrm{H}-\mathrm{A}$ bond becomes more polar, i.e. the electronegativity difference between the atoms $\mathrm{H}$ and A increases and there is marked charge separation, clavate of the bond becomes easier there by increasing the acidic. Thus, polarity of bond $\alpha$ difference of electronegativity $\alpha$ Acidity.
$(iii)$ The strength of $\mathrm{H}-\mathrm{A}$ in only one period : In the row of the periodic table, $\mathrm{H}-\mathrm{A}$ bond polarity becomes the deciding factor for determining the acid strength. As the electronegativity of a increases, the strength of acid also increases. For example, $\rightarrow$ Electronegativity A increases $\rightarrow \mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF} \rightarrow$ Acid strength increases $\rightarrow$ The acidic strength in group : In the group of the periodic table, $H$ - $A$ bond strength is a more important factor in determining acidity than its polar nature. As the size of $\mathrm{A}$ increases down the group. $\mathrm{H}-\mathrm{A}$ bond strength decreases and so the acid strength increases. For example,
$\rightarrow$ Size increases of $\mathrm{A} \rightarrow \mathrm{HF} \ll \mathrm{HCl} \ll \mathrm{HBr} \ll \mathrm{HI} \rightarrow$ Acid strength increases $\rightarrow$
The $pH$ of $0.1$ $M$ $HCN$ solution is $5.2$ calculate ${K_a}$ of this solution.
A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$
Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$
Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules
Given
$(i)$ $\begin{gathered}
HCN\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons {H_3}{O^ + }\left( {aq} \right) + C{N^ - }\left( {aq} \right) \hfill \\
{K_a} = 6.2 \times {10^{ - 10}} \hfill \\
\end{gathered} $
$(ii)$ $\begin{gathered}
C{N^ - }\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons HCN\left( {aq} \right) + O{H^ - }\left( {aq} \right) \hfill \\
{K_b} = 1.6 \times {10^{ - 5}} \hfill \\
\end{gathered} $
These equilibria show the following order of the relative base strength