व्यवस्थात्मकतः निम्नलिखित में संगत समविभव पृष्ठ का वर्णन कीजिएः
$(a)$ $Z-$दिशा में अचर विद्युत क्षेत्र
$(b)$ एक क्षेत्र जो एकसमान रूप से बढ़ता है, परंतु एक ही दिशा ( मान लीजिए $z-$ दिशा) में रहता है।
$(c)$ मूल बिंदु पर कोई एकल धनावेश, और
$(d)$ एक समतल में समान दूरी पर समांतर लंबे आवेशित तारों से बने एकसमान जाल।
$(a)$ Equidistant planes parallel to the $x -y$ plane are the equipotential surfaces.
$(b)$ Planes parallel to the $x -y$ plane are the equipotential surfaces with the exception that when the planes get closer, the field increases.
$(c)$ Concentric spheres centered at the origin are equipotential surfaces.
$(d)$ A periodically varying shape near the given grid is the equipotential surface. This shape gradually reaches the shape of planes parallel to the grid at a larger distance.
एक अनन्त कुचालक चादर के एक सतह पर आवेश घनत्व $\sigma = 0.10\, \mu C/m^2$ है। यदि इसके विद्युत क्षेत्र में दो समविभवी सतहों के मध्य विभवान्तर $50\, V$ है तो इनके मध्य की दूरी होगी
समरूप विद्युत क्षेत्र किसी क्षेत्र में धनात्मक $x$-दिशा की ओर इंगित है। माना $A$ मूलबिन्दु है, $B$, $x$-अक्ष पर $x = + 1$ सेमी. पर बिन्दु है तथा $C$ $y$-अक्ष पर $y = + 1$ सेमी. पर एक बिन्दु है तो बिन्दुओं $A$, $B$ व $C$ पर विभव निम्न सम्बंध से सन्तुष्ट होंगे
एक विद्युत क्षेत्र परिमाण में $x -$ अक्ष के अनुदिश बढ़ रहा है, संगत समविभवी सतहें होंगी
नीचे दो कथन दिये गये है : एक को अभिकथन ($A$) तथा दूसरे को कारण $(\mathrm{R})$ से चिन्हित किया गया है। अभिकथन ($A$) : एक समविभव पृष्ठ पर गतिमान एक धनावेश पर वैद्युत क्षेत्र द्वारा किया गया कार्य सदैव शून्य होता है।
कारण ($R$) : वैद्युत बल रेखाएँ सदैव समविभव पृष्ठ के लम्बवत् होती है।
उपरोक्त कथनों के आलोक में नीचे दिये गए विकल्पों में से सबसे उचित उत्तर का चयन कीजिए।
जब एकांक धन आवेश को समविभव सतह पर एक बिन्दु से दूसरे बिन्दु तक ले जाते है, तो