एक विद्युत क्षेत्र परिमाण में $x -$ अक्ष के अनुदिश बढ़ रहा है, संगत समविभवी सतहें होंगी
$yz$-तल के समान्तर तल
$xy$-तल के समान्तर तल
$xz$-तल के समान्तर तल
$x$-अक्ष के चारों ओर बढ़ती हुयी त्रिज्या के समाक्षीय बेलन
निम्न चित्र में समविभव बिन्दु होंगे
$R$ त्रिज्या के किसी एकसमान आवेशित ठोस गोले के पृष्ठ का विभव $V_{0}$ है $(\infty$ के सापेक्ष मापा गया)। इस गोले के लिये, $\frac{3 V_{0}}{2}, \frac{5 V_{0}}{4}, \frac{3 V_{0}}{4}$ तथा $\frac{V_{0}}{4}$ विभवो वाले समविभवी पृष्ठों को त्रिज्यायें, क्रमश: $R_{1}, R_{2}, R_{3}$ तथा $R_{4}$ हैं, तो,
समरूप विद्युत क्षेत्र किसी क्षेत्र में धनात्मक $x$-दिशा की ओर इंगित है। माना $A$ मूलबिन्दु है, $B$, $x$-अक्ष पर $x = + 1$ सेमी. पर बिन्दु है तथा $C$ $y$-अक्ष पर $y = + 1$ सेमी. पर एक बिन्दु है तो बिन्दुओं $A$, $B$ व $C$ पर विभव निम्न सम्बंध से सन्तुष्ट होंगे
एक अनन्त कुचालक चादर के एक सतह पर आवेश घनत्व $\sigma = 0.10\, \mu C/m^2$ है। यदि इसके विद्युत क्षेत्र में दो समविभवी सतहों के मध्य विभवान्तर $50\, V$ है तो इनके मध्य की दूरी होगी
यहाँ आरेख में कुछ समविभव क्षेत्र दर्शाये गये हैं :
प्रत्येक आरेख एक धनात्मक आवेश को $A$ से $B$ तक ले जाते हैं। तो, इस प्रक्रम में, $q$ को $A$ से $B$ तक ले जाने में :