Determine mean and standard deviation of first n terms of an $A.P.$ whose first term is a and common difference is d.
$\begin{array}{|c|c|c|} \hline x_{i} & x_{i}-a & \left(x_{i}-a\right)^{2} \\ \hline a & 0 & 0 \\ \hline a+d & d & d^{2} \\ \hline a+2 d & 2 d & 4 d^{2} \\ \hline \end{array}$
$\begin{array}{|c|c|c|} \hline \ldots & \ldots & 9 d^{2} \\ \hline \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots \\ \hline a+(n-1) d & (n-1) d & (n-1)^{2} d^{2} \\ \hline \Sigma x_{i}=\frac{n}{2}[2 a+(n-1) d ] & & \\ \hline \end{array}$
$\text { Mean }=\frac{\Sigma x_{i}}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]=a+\frac{(n-1)}{2} d\right.$
$\Sigma\left(x_{i}-a\right)=d[1+2+3+\ldots+(n-1) d]=d \frac{(n-1) n}{2}$
and $\quad \Sigma\left(x_{i}-a\right)^{2}=d^{2} \cdot\left[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}\right]=\frac{d^{2} n(n-1)(2 n-1)}{6}$
$\sigma=\sqrt{\frac{\left(x_{i}-a\right)^{2}}{n}-\left(\frac{x_{i}-a}{n}\right)^{2}}$
$=\sqrt{\frac{d^{2} n(n-1)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^{2}}=\sqrt{\frac{d^{2}(n-1)(2 n-1)}{6}-\frac{d^{2}(n-1)^{2}}{4}}$
$=d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)=d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]}}$
${2 \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{n^{2}-1}{12}}}$
The $S.D.$ of $5$ scores $1, 2, 3, 4, 5$ is
The mean and standard deviation of $100$ observations were calculated as $40$ and $5.1$ , respectively by a student who took by mistake $50$ instead of $40$ for one observation. What are the correct mean and standard deviation?
For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true
The mean and standard deviation of $20$ observations were calculated as $10$ and $2.5$ respectively. It was found that by mistake one data value was taken as $25$ instead of $35 .$ If $\alpha$ and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then $(\alpha, \beta)$ is :
If the variance of observations ${x_1},\,{x_2},\,......{x_n}$ is ${\sigma ^2}$, then the variance of $a{x_1},\,a{x_2}.......,\,a{x_n}$, $\alpha \ne 0$ is