Determine mean and standard deviation of first n terms of an $A.P.$ whose first term is a and common difference is d.

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\begin{array}{|c|c|c|} \hline x_{i} & x_{i}-a & \left(x_{i}-a\right)^{2} \\ \hline a & 0 & 0 \\ \hline a+d & d & d^{2} \\ \hline a+2 d & 2 d & 4 d^{2} \\ \hline \end{array}$

$\begin{array}{|c|c|c|} \hline \ldots & \ldots & 9 d^{2} \\ \hline \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots \\ \hline a+(n-1) d & (n-1) d & (n-1)^{2} d^{2} \\ \hline \Sigma x_{i}=\frac{n}{2}[2 a+(n-1) d ] & & \\ \hline \end{array}$

$\text { Mean }=\frac{\Sigma x_{i}}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]=a+\frac{(n-1)}{2} d\right.$

$\Sigma\left(x_{i}-a\right)=d[1+2+3+\ldots+(n-1) d]=d \frac{(n-1) n}{2}$

and $\quad \Sigma\left(x_{i}-a\right)^{2}=d^{2} \cdot\left[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}\right]=\frac{d^{2} n(n-1)(2 n-1)}{6}$

$\sigma=\sqrt{\frac{\left(x_{i}-a\right)^{2}}{n}-\left(\frac{x_{i}-a}{n}\right)^{2}}$

$=\sqrt{\frac{d^{2} n(n-1)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^{2}}=\sqrt{\frac{d^{2}(n-1)(2 n-1)}{6}-\frac{d^{2}(n-1)^{2}}{4}}$

$=d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)=d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]}}$

${2 \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{n^{2}-1}{12}}}$

Similar Questions

The first of the two samples in a group has $100$ items with mean $15$ and standard deviation $3 .$ If the whole group has $250$ items with mean $15.6$ and standard deviation $\sqrt{13.44}$, then the standard deviation of the second sample is:

  • [JEE MAIN 2021]

From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........

  • [JEE MAIN 2024]

The mean and $S.D.$ of $1, 2, 3, 4, 5, 6$ is

The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

If it is replaced by $12$

Suppose a population $A $ has $100$ observations $ 101,102, . . .,200 $ and another population $B $ has $100$ observation $151,152, . . .,250$ .If $V_A$ and $V_B$ represent the variances of the two populations , respectively then $V_A / V_B$ is

  • [AIEEE 2006]