- Home
- Standard 11
- Mathematics
Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively
Statement $I$ and Statement $II$ are both false
Statement $I$ and Statement $II$ are both true
Statement $I$ is true and Statement $II$ is false
Statement $I$ is false and Statement $II$ is true
Solution
$\left( b \right)\,\,\bar x = \frac{{{x_1} + {x_2} + {x_3} + … + {x_n}}}{n}$
${\sigma ^2} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} – \bar x} \right)}^2}} $
Mean of ${d_1},{d_2},{d_3},……,{d_n}$
$ = \frac{{{d_1} + {d_2} + {d_3} + …… + {d_n}}}{n}$
$ = \frac{{\left( { – {x_1} – a} \right) + \left( { – {x_2} – a} \right) + \left( { – {x_3} – a} \right) + ….. + \left( { – {x_n} – a} \right)}}{n}$
$ = – \left[ {\frac{{{x_1} + {x_2} + {x_3} + … + {x_n}}}{n}} \right] – \frac{{na}}{n}$
$ = – \bar x – a$
Since, ${d_i} = – {x_i} – a$ and we multiply or subtract each observation by any number the mode remains the same. Hence mode of $ – {x_i} – a$ i.e. ${d_i}$ and ${x_i}$ are same.
Now variance of ${d_1},{d_2},……,{d_n}$
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {{d_i} – \left( { – \bar x – a} \right)} \right]}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ { – {x_i} – a + \bar x – a} \right]}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( { – {x_i} + \bar x} \right)}^2}} $
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\bar x – {x_i}} \right)}^2}} = {\sigma ^2}$
Similar Questions
Find the mean and variance for the following frequency distribution.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequencies | $5$ | $8$ | $15$ | $16$ | $6$ |