જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\begin{array}{|c|c|c|} \hline x_{i} & x_{i}-a & \left(x_{i}-a\right)^{2} \\ \hline a & 0 & 0 \\ \hline a+d & d & d^{2} \\ \hline a+2 d & 2 d & 4 d^{2} \\ \hline \end{array}$

$\begin{array}{|c|c|c|} \hline \ldots & \ldots & 9 d^{2} \\ \hline \ldots & \ldots & \ldots \\ \hline \ldots & \ldots & \ldots \\ \hline a+(n-1) d & (n-1) d & (n-1)^{2} d^{2} \\ \hline \Sigma x_{i}=\frac{n}{2}[2 a+(n-1) d ] & & \\ \hline \end{array}$

$\text { Mean }=\frac{\Sigma x_{i}}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]=a+\frac{(n-1)}{2} d\right.$

$\Sigma\left(x_{i}-a\right)=d[1+2+3+\ldots+(n-1) d]=d \frac{(n-1) n}{2}$

and $\quad \Sigma\left(x_{i}-a\right)^{2}=d^{2} \cdot\left[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}\right]=\frac{d^{2} n(n-1)(2 n-1)}{6}$

$\sigma=\sqrt{\frac{\left(x_{i}-a\right)^{2}}{n}-\left(\frac{x_{i}-a}{n}\right)^{2}}$

$=\sqrt{\frac{d^{2} n(n-1)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^{2}}=\sqrt{\frac{d^{2}(n-1)(2 n-1)}{6}-\frac{d^{2}(n-1)^{2}}{4}}$

$=d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)=d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]}}$

${2 \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{n^{2}-1}{12}}}$

Similar Questions

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

${x_i}$ $92$ $93$ $97$ $98$ $102$ $104$ $109$
${f_i}$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

સંખ્યાઓ $8,21,34,47, \ldots, 320$, નું વિચરણ મેળવો.

  • [JEE MAIN 2025]

જો $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ અને $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ હોય તો $x_1, x_2, ...... x_{18}$ નું પ્રમાણિત વિચલન મેળવો 

ધારોકે વર્ગ $A$ના $100$ વિદ્યાર્થીઓના ગુણનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $40$ અને $\alpha( > 0)$ છે તથા વર્ગ $B$ના $n$ વિદ્યાર્થીઓના ગુણનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $55$ અને $30-\alpha$ છે.જો $100+n$ના સંયુક્ત વર્ગના ગુણોનો મધ્યક અને વિચરણ અનુક્રમે $50$ અને $350$ હોય,તો વર્ગ $A$ અને વર્ગ $B$ના વિચરણનો સરવાળો $...........$ છે.

  • [JEE MAIN 2023]

જો $n$  અવલોકનો $x_1, x_2, …… x_n$  નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?