The variance of the first $n$ natural numbers is
$\frac{{{n^2} - 1}}{{12}}$
$\frac{{{n^2} - 1}}{6}$
$\frac{{{n^2} + 1}}{6}$
$\frac{{{n^2} + 1}}{{12}}$
If the standard deviation of $0, 1, 2, 3, …..,9$ is $K$, then the standard deviation of $10, 11, 12, 13 …..19$ is
The mean and standard deviation of $10$ observations are $20$ and $84$ respectively. Later on, it was observed that one observation was recorded as $50$ instead of $40$. Then the correct variance is:
The mean of the numbers $a, b, 8, 5, 10$ is $6$ and the variance is $6.80.$ Then which one of the following gives possible values of $a$ and $b$ $?$
The standard deviation of $25$ numbers is $40$. If each of the numbers is increased by $5$, then the new standard deviation will be
Let $\mathrm{X}$ be a random variable with distribution.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
If the mean of $X$ is $2.3$ and variance of $X$ is $\sigma^{2}$, then $100 \sigma^{2}$ is equal to :