Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{A}$ of human beings in a town at a particular time given by
$ \mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ and $ \mathrm{y}$ work at the same place $\}$
$\mathrm{R} =\{( \mathrm{x} , \mathrm{y} ): \mathrm{x}$ and $\mathrm{y}$ work at the same place $\}$
$\Rightarrow(\mathrm{x}, \mathrm{x}) \in \mathrm{R}$ [as $\mathrm{x}$ and $\mathrm{x}$ work at the same place $]$
$\therefore \mathrm{R}$ is reflexive.
If $(\mathrm{x}, \mathrm{y}) \in \mathrm{R},$ then $\mathrm{x}$ and $\mathrm{y}$ work at the same place.
$\Rightarrow \mathrm{y}$ and $\mathrm{x}$ work at the same place.
$\Rightarrow(\mathrm{y}, \mathrm{x}) \in \mathrm{R}$
$\therefore \mathrm{R}$ is symmetric.
Now, let $(\mathrm{x}, \mathrm{y}),\,(\mathrm{y}, \mathrm{z}) \in \mathrm{R}$
$\Rightarrow \mathrm{x}$ and $\mathrm{y}$ work at the same place and $\mathrm{y}$ and $\mathrm{z}$ work at the same place.
$\Rightarrow \mathrm{x}$ and $\mathrm{z}$ work at the same place.
$\Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{R}$
$\therefore \mathrm{R}$ is transitive.
Hence. $\mathrm{R}$ is reflexive, symmetric, and transitive.
Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$
Let ${R_1}$ be a relation defined by ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $. Then ${R_1}$ is
$A$ relation $R$ is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$ by $xRy \Leftrightarrow x$ is relatively prime to $y$. Then domain of $R$ is
Let $P = \{ (x,\,y)|{x^2} + {y^2} = 1,\,x,\,y \in R\} $. Then $P$ is
Let $A=\{1,2,3\} .$ Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is