Let $R$ be the relation in the set $\{1,2,3,4\}$ given by $R =\{(1,2),\,(2,2),\,(1,1),\,(4,4)$ $(1,3),\,(3,3),\,(3,2)\}$. Choose the correct answer.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R=\{(1,2),\,(2,2),\,(1,1),\,(4,4),\,(1,3),\,(3,3),\,(3,2)\}$

It is seen that $(a, \,a) \in R,$ for every $a \in\{1,\,2,\,3,\,4\}$

$\therefore R$ is reflexive.

It is seen that $(1,\,2) \in R ,$ but $(2,\,1)\notin R$

$\therefore R$ is not symmetric.

Also, it is observed that $(a, \,b),\,(b, \,c) \in R \Rightarrow(a,\, c) \in R$ for all $a, \,b, \,c \in\{1,\,2,\,3,\,4\}$

$\therefore R$ is transitive.

Hence, $R$ is reflexive and transitive but not symmetric.

The correct answer is $B$.

Similar Questions

Let $A = \{ 2,\,4,\,6,\,8\} $. $A$ relation $R$ on $A$ is defined by $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $. Then $R$ is

Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R =\{(a, b):|a-b|$ is even $\},$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to  each other and all the elements of $ \{2,4\}$ are

Consider set $A = \{1,2,3\}$ . Number of symmetric relations that can be defined on $A$ containing the ordered pair $(1,2)$ & $(2,1)$ is

Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation. 

Let $R =\{( P , Q ) \mid P$ and $Q$ are at the same distance from the origin $\}$ be a relation, then the equivalence class of $(1,-1)$ is the set

  • [JEE MAIN 2021]