निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ के पिता हैं$\}$
$R =\{( x , y ): x$ is the father of $y \}$
$( x , x ) \notin R$
As $x$ cannot be the father of himself.
$\therefore R$ is not reflexive.
Now, let $( x , y ) \notin R$
$\Rightarrow x$ is the father of $y$
$\Rightarrow y$ cannot be the father of $y$
Indeed, $y$ is the son or the daughter of $y$.
$\therefore(y, x) \notin R$
$\therefore R$ is not symmetric.
Now, let $(x, y) \in R$ and $(y, z) \notin R$
$\Rightarrow x$ is the father of $y$ and $y$ is the father of $z$.
$\Rightarrow x$ is not the father of $z$
Indeed, $x$ is the grandfather of $z$
$\therefore $ $( x , z ) \notin R$
$\therefore R$ is not transitive.
Hence, $R$ is neither reflexive, nor symmetric, nor transitive.
माना $R _1=\{( a , b ) \in N \times N :| a - b | \leq 13\}$ तथा $R _2=\{( a , b ) \in N \times N :| a - b | \neq 13\}$ है।तब $N$ में :
माना $A = \{1, 2, 3\}, $ तब $A$ पर परिभाषित कुल संबंधों की संख्या क्या होगी
जाँच कीजिए कि क्या $R$ में $R =\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?
संबंध "सर्वागसम मापांक $m$" है
मान लीजिए कि समुच्चय $A =\{1,2,3,4,5,6,7\}$ में $R =\{(a, b): a$ तथा $b$ दोनों ही या तो विषम हैं या सम हैं$\}$ द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2,4,6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव उपसमुच्चय $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं है।