सिद्ध किजिए कि समुच्चय $A =\{x \in Z : 0 \leq x \leq 12\},$ में दिए गए निम्नलिखित संबंधों $R$ में से प्रत्येक एक तुल्यता संबंध है:
$R=\{(a, b): a=b\}$
प्रत्येक दशा में $1$ से संबधित अवयवों को ज्ञात कीजिए।
$R =\{( a , b ): a = b \}$
For any element a $\in A,$ we have $(a,\, a) \in R,$ since $a=a$
$\therefore R$ is reflexive.
Now, let $(a, b) \in R$
$\Rightarrow a=b$
$\Rightarrow b=a \Rightarrow(b, a) \in R$
$\therefore R$ is symmetric.
Now, let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow a=b$ and $b=c$
$\Rightarrow a=c$
$\Rightarrow(a,\, c) \in R$
$\therefore R$ is transitive.
Hence, $R$ is an equivalence relation.
The elements in $R$ that are related to $1$ will be those elements from set $A$ which are equal to $1$
Hence, the set of elements related to $1$ is $\{1\}$.
माना $\mathbb{N} \times \mathbb{N}$ पर एक संबंध $\mathrm{R},(\mathrm{a}, \mathrm{b}), \mathrm{R}(\mathrm{c}, \mathrm{d})$ यदि और केवल यदि $a d(b-c)=b c(a-d)$ है, द्वारा परिभाषित है। तो $R$
मान लीजिए कि $T$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $T$ में $R =\left\{\left( T _{1}, T _{2}\right): T _{1}, T _{2}\right.$ के सर्वागंसम है $\}$ एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता
संबंध है।
संबंध "सर्वागसम मापांक $m$" है
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ की पत्नी है$\}$
माना $X = \{ 1,\,2,\,3,\,4,\,5\} $ तथा $Y = \{ 1,\,3,\,5,\,7,\,9\} $, निम्न में से कौनसा $X$ और $Y$ में संबंध है।