$\frac{1}{\mu_0 \in_0}$ की विमा होगी:
$T ^2 / L ^2$
$L / T$
$L ^2 / T ^2$
$T / L$
यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं
निम्नलिखित में से कौनसी भौतिक राशियों के युग्म की विमायें समान है
यदि ऊर्जा $(E)$, वेग $(v)$ तथा बल $(F)$ को मूल राशि माना जाए तो द्रव्यमान की विमा क्या होगी
यदि $\varepsilon_{0}$ निर्वात (मुक्ताकाश) की विघुतशीलता हो तथा $E$ वैघुत क्षेत्र हो तो, $\frac{1}{2} \varepsilon_{0} E^{2}$ की विमा होगी
दाब-प्रवणता की विमा किसके तुल्य है