समतलीय कोण एवं घन कोण में होता है :
विमा लेकिन कोई मात्रक नहीं
ना कोई मात्रक ना कोई विमा
मात्रक एवं विमा दोनों
मात्रक पर कोई विमा नहीं
यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी
सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
कौनसी भौतिक राशियों की विमायें समान हैं
सूची $I$ का सूची $II$ से मिलान कीजिए :
सूची $-I$ | सूची $-II$ |
$(a)$ धारिता, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ मुक्त आकाश की विधुत शीलता, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ मुक्त आकाश की पारगम्यता, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ विधुत क्षेत्र, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनिए
श्यानता गुणांक की विमायें हैं