ज्योति फ्लक्स की विमा होगी
$M{L^2}{T^{ - 2}}$
$M{L^2}{T^{ - 3}}$
$M{L^2}{T^{ - 1}}$
$ML{T^{ - 2}}$
एक विशेष मात्रक पद्धति निकाय (system of units) में, एक भौतिकी राशि को इलेक्ट्रॉनिक आवेश $e$, इलेक्ट्रॉन द्रव्यमान $m_e$ प्लांक नियतांक (Planck's constant) $h$ और कूलाम्ब नियतांक $k=\frac{1}{4 \pi \epsilon_0}$ के रूप में निरूपित किया जाता है, जहाँ $\epsilon_0$ निर्वात का परावेधुतांक (permittivity) है। इन भौतिकीय नियतांको के रूप में, चुम्बकीय क्षेत्र की विमा (dimension) $[B]=[e]^\alpha\left[m_e\right]^\beta[h]^\gamma[k]^\delta$ है। $\alpha+\beta+\gamma+\delta$ का मान. . . . . है ।
तरंग संख्या का विमीय सूत्र है
यदि $C$ धारिता के संधारित्र की प्लेटों के बीच विभवान्तर $V$ है, तब $C{V^2}$ की विमायें हैं
सूची $-I$ का सूची $-II$ से मिलान करें।
सूची $-I$ | सूची $-II$ |
$(A)$ कोणीय संवेग | $(I)$ $\left[ ML ^2 T ^{-2}\right]$ |
$(B)$ बलाघूर्ण | $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$ |
$(C)$ प्रतिबल | $(III)$ $\left[ ML ^2 T ^{-1}\right]$ |
$(D)$ दाब प्रवणता | $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$ |
नीचे दिए गए विकल्पों में से सही उत्तर चुनें :
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं