Domain of $log\,log\,log\, ....(x)$ is
$ \leftarrow \,n\,\,times\, \to $
$(0,\infty )$
$({10^n},\infty )$
$({10^{n - 1}},\infty )$
$({10^{n - 2}},\infty )$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
Let $f(x)=\frac{x-1}{x+1}, x \in R-\{0,-1,1)$. If $f^{a+1}(x)=f\left(f^{n}(x)\right)$ for all $n \in N$, then $f^{\prime}(6)+f(7)$ is equal to
The function $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, where $p > 0,\;q > 0,\;r > 0$ assumes its minimum value only at one point, if
Least integer in the range of $f(x)$=$\sqrt {(x + 4)(1 - x)} - {\log _2}x$ is
Domain of the function $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ is