Let, $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ and $A=\{x \in R: f(x)=1\} .$ Then, $A$ has

  • [KVPY 2019]
  • A

    exactly one element 

  • B

    exactly two elements 

  • C

    exactly three elements 

  • D

    infinitely many elements

Similar Questions

$f : R \to R$ is defined as

$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$

 If $f (x)$ is one-one then the set of values of $'m'$ is

Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which

$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is

  • [JEE MAIN 2022]

The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$  is

Where $[x]$ denotes greatest integer function.

Set $A$ has $3$ elements and set $B$ has $4$ elements. The number of injection that can be defined from $A$ to $B$ is

If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{\varepsilon}(123)}{x \log _{\varepsilon}(1234)-\left(\tan 1^{\circ}\right)}, x > 0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is $...........$.

  • [JEE MAIN 2023]