1.Relation and Function
hard

Let, $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ and $A=\{x \in R: f(x)=1\} .$ Then, $A$ has

A

exactly one element 

B

exactly two elements 

C

exactly three elements 

D

infinitely many elements

(KVPY-2019)

Solution

(a)

Given function

$f(x)=\left[\begin{array}{cl} x \sin \left(\frac{1}{x}\right) & , \text { when } x \neq 0 \\ 1 & , \text { when } x=0 \end{array}\right.$

Now, for $x=0, f(x)=1$ and for $x \neq 0, f(x)=1 \Rightarrow \sin \frac{1}{x}=\frac{1}{x}$ has no solution.

$\therefore$ The $\operatorname{set} A=\{x \in R: f(x)=1\}$ has exactly one element.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.