Draw electric field lines when two positive charges are near.
Assertion : Four point charges $q_1,$ $q_2$, $q_3$ and $q_4$ are as shown in figure. The flux over the shown Gaussian surface depends only on charges $q_1$ and $q_2$.
Reason : Electric field at all points on Gaussian surface depends only on charges $q_1$ and $q_2$ .
What is called Gaussian surface ?
A metallic sphere is kept in between two oppositely charged plates. The most appropriate representation of the field lines is
An infinitely long uniform line charge distribution of charge per unit length $\lambda$ lies parallel to the $y$-axis in the $y-z$ plane at $z=\frac{\sqrt{3}}{2} a$ (see figure). If the magnitude of the flux of the electric field through the rectangular surface $A B C D$ lying in the $x-y$ plane with its center at the origin is $\frac{\lambda L }{ n \varepsilon_0}\left(\varepsilon_0=\right.$ permittivity of free space $)$, then the value of $n$ is
Write $SI$ unit of electric flux.