During the propagation of electromagnetic waves in a medium
Electric energy density is half of the magnetic energy density
Electric energy density is equal to the magnetic energy density
Both electric and magnetic energy densities are zero
Electric energy density is double of the magnetic energy density
A radio transmitter transmits at $830\, kHz$. At a certain distance from the transmitter magnetic field has amplitude $4.82\times10^{-11}\,T$. The electric field and the wavelength are respectively
An electromagnetic wave with frequency $\omega $ and wavelength $\lambda $ travels in the $+ y$ direction . Its magnetic field is along $+\, x-$ axis. The vector equation for the associated electric field ( of amplitude $E_0$) is
The velocity of certain ions that pass undeflected through crossed electric field $E = 7.7\,k\,V /m$ and magnetic field $B = 0.14\,T$ is.....$km/s$
In a plane $EM$ wave, the electric field oscillates sinusoidally at a frequency of $5 \times 10^{10} \mathrm{~Hz}$ and an amplitude of $50 \mathrm{Vm}^{-1}$. The total average energy density of the electromagnetic field of the wave is :
[Use $\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2$ ]
The electric field intensity produced by the radiation coming from a $100\, W$ bulb at a distance of $3\, m$ is $E$. The electric field intensity produced by the radiation coming from $60\, W$ at the same distance is $\sqrt{\frac{x}{5}} E$. Where the value of $x=......... .$