सर्ल के प्रयोग में वर्नियर पैमाने का शून्य मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है। वर्नियर पैमाने का बीसवाँ भाग ( $20^{\text {th }}$ division) मुख्य पैमाने के किसी एक भाग के बिलकुल सीध में है। तार पर $2 \ kg$ का अतिरिक्त भार लगाने पर, यह देखा गया कि वर्नियर पैमाने का शून्य अभी भी मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है, परन्तु अब वर्नियर पैमाने का पैंतालिसवाँ भाग ( $45^{\text {th }}$ division) मुख्य पैमाने के किसी अन्य भाग के बिलकुल सीध में है। धातु के पतले तार की लम्बाई $2 m$ तथा अनुप्रस्थ काट का क्षेत्रफल $8 \times 10^{-7} m ^2$ है। पैमाने का अल्पतमांक (least count) $1.0 \times 10^{-5} m$ है। तार के यंग प्रत्यास्थता गुणांक (Young's modulus) में अधिकतम प्रतिशत त्रुटि है।
$8$
$7$
$6$
$5$
किसी प्रयोग में चार राशियों $a , b , c$ तथा $d$ के मापन (नापने) में क्रमश: $1 \%, 2 \%, 3 \%$ तथा $4 \%$ की त्रुटि होती है। एक राशि $P$ का मान निम्नलिखित रूप से परिकलित किया जाता है : $P =\frac{ a ^{3} b ^{3}}{ cd }$ तो $P$ के मापन में प्रतिशत .......$(\%)$ त्रुटि होगी
एक भौतिक राशि $P$ निम्न सूत्र से प्रदर्शित की जाती है $P=\frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}},$ तो $P$ में अधिकतम त्रुटि किस राशि के कारण आ सकती है
एक तार का द्रव्यमान $0.3 \pm 0.003\,g$, त्रिज्या $0.5 \pm 0.005\,mm$ तथा लम्बाई $6 \pm 0.06\,cm$ है। इसके घनत्व के मापन में अधिकतम प्रतिशत त्रुटि .......... $\%$ होगी
किसी तार का प्रतिरोध उसमें प्रवाहित धारा तथा छोड़ों के बीच विभवान्तर का मापन कर प्राप्त किया जा सकता है। यदि धारा तथा विभवान्तर के मापन में प्रत्येक $3\, \%$ की त्रुटि प्राप्त होती है, तो तार के प्रतिरोघ के मान में प्रतिशत त्रुटि ($\%$ में) ज्ञात कीजिये।
प्रतिरोध $R =\frac{ V }{ I }$, जहाँ $V =(50\, \pm 2) \,V$ और $I =(20 \pm 0.2)\, A$ है $R$ में प्रतिशत त्रुटि ' $x$ ' $\%$ है । ' $x$ ' का मान निकटतम पूर्णांक में $.........$ है।