- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to
A
$31$
B
$29$
C
$32$
D
$34$
(JEE MAIN-2022)
Solution
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a > b$
$e^{2}=1-\frac{b^{2}}{a^{2}}$
$\frac{1}{16}=1-\frac{b^{2}}{a^{2}}$
$\frac{b^{2}}{a^{2}}=1-\frac{1}{16}=\frac{15}{16} \Rightarrow b^{2}=\frac{15}{16} a^{2}$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{16 \times \frac{2}{5}}{a^{2}}+\frac{9}{b^{2}}=1$
$\frac{32}{5 a^{2}}+\frac{9}{b^{2}}=1$
$\frac{32}{5 a^{2}}+\frac{9}{\frac{15}{16} a^{2}}=1$
$\frac{80}{b^{2}}=1$
Standard 11
Mathematics
Similar Questions
normal