Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

A tangent to the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ intersect the co-ordinate axes at $A$ and $B,$ then locus of circumcentre of triangle $AOB$ (where $O$ is origin) is

A

$\frac{16}{x^2}+\frac{25}{y^2}=1$

B

$16x^2 + 25y^2 = 4$

C

$\frac{25}{x^2}+\frac{16}{y^2}=4$

D

$\frac{25}{x^2}+\frac{16}{y^2}=1$

Solution

Any tangent to the ellipse is

$\frac{x \cos \theta}{5}+\frac{y \sin \theta}{4}=1$

$\therefore $ $A = (5\sec \theta ,0),B = (0,4\cos ec\theta )$

Let $(\mathrm{h}, \mathrm{k})$ be the circumcentre of $\Delta \mathrm{A} \mathrm{OB},$ then

$2 \mathrm{h}=\frac{5}{\cos \theta}$ and $2 \mathrm{k}=\frac{4}{\sin \theta}$

$\therefore $ Locus of $(\mathrm{h}, \mathrm{k})$ is $\frac{25}{\mathrm{x}^{2}}+\frac{16}{\mathrm{y}^{2}}=4.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.