A tangent to the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ intersect the co-ordinate axes at $A$ and $B,$ then locus of circumcentre of triangle $AOB$ (where $O$ is origin) is
$\frac{16}{x^2}+\frac{25}{y^2}=1$
$16x^2 + 25y^2 = 4$
$\frac{25}{x^2}+\frac{16}{y^2}=4$
$\frac{25}{x^2}+\frac{16}{y^2}=1$
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is
If the line $y = 2x + c$ be a tangent to the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, then $c = $
Slope of common tangents of parabola $(x -1)^2 = 4(y -2)$ and ellipse ${\left( {x - 1} \right)^2} + \frac{{{{\left( {y - 2} \right)}^2}}}{2} = 1$ are $m_1$ and $m_2$ ,then $m_1^2 + m_2^2$ is equal to
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is