- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
Equation of the tangent to the circle ${x^2} + {y^2} = {a^2}$ which is perpendicular to the straight line $y = mx + c$ is
A
$y = - \frac{x}{m} \pm a\sqrt {1 + {m^2}} $
B
$x + my = \pm {\rm{ }}a{\rm{ }}\sqrt {1 + {m^2}} $
C
$x + my = \pm a\sqrt {1 + {{(1/m)}^2}} $
D
$x - my = \pm a\sqrt {1 + {m^2}} $
Solution
(b) Line perpendicular to $y = mx + c$ is $y = – \frac{1}{m}x + \lambda $
and $m\lambda = \pm a\sqrt {1 + {m^2}} $
Hence required tangent is $my + x = \pm a\sqrt {1 + {m^2}} $.
Standard 11
Mathematics