$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ નું મૂલ્ય શોધો.
$8$
$2$
$5$
$6$
We have $\left|\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right|=2(2)-4(-1)=4+4=8$
જે સમીકરણ સંહતિ
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
ને અસંખ્ય ઉકેલો હોય, તો $\lambda^4-\mu=$………….
$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ – x}})}^2}}&{{{({a^x} – {a^{ – x}})}^2}}&1\\{{{({b^x} + {b^{ – x}})}^2}}&{{{({b^x} – {b^{ – x}})}^2}}&1\\{{{({c^x} + {c^{ – x}})}^2}}&{{{({c^x} – {c^{ – x}})}^2}}&1\end{array}\,} \right| = $
જો $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ તો $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$ = . . .
જો ${a_1},{a_2},{a_3}…..{a_n}….$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ તો $x =$
Confusing about what to choose? Our team will schedule a demo shortly.