Evaluate the determinants
$\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|$
Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$
By expanding along the first row, we have:
$|A| = 3\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
3&1
\end{array}} \right| + 4\left| {\begin{array}{*{20}{c}}
1&{ - 2} \\
2&1
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
1&1 \\
2&3
\end{array}} \right|$
$ = 3(1 + 6) + 4(1 + 4) + 5(3 - 2)$
$ = 3(7) + 4(5) + 5(1)$
$ = 21 + 20 + 5 = 46$
If $a \ne b \ne c,$ the value of $x$ which satisfies the equation $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$, is
Evaluate $\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$
Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$ are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then $(a + b + c)$ is equal to-
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is