Exact set of values of $a$ for which ${x^3}(x + 1) = 2(x + a)(x + 2a)$ is having four real solutions is
$[-1,2]$
$[-3,7]$
$[-2,4]$
$\left[ { - \frac{1}{8},\frac{1}{2}} \right]$
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,
The number of real roots of the equation, $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ is
For what value of $\lambda$ the sum of the squares of the roots of ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ is minimum
The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is