- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is
A
$8$
B
$3$
C
$5$
D
$0$
(JEE MAIN-2022)
Solution
$x ^{5}\left( x ^{3}- x ^{2}- x +1\right)+ x \left(3 x ^{3}-4 x ^{2}-2 x +4\right)-1=0$
$( x -1)^{2}( x +1)\left( x ^{5}+3 x -1\right)=0$
Let $f(x)=x^{5}+3 x-1$
$f^{\prime}(x)>0 \forall x \in R$
Hence $3$ real distinct roots.
Standard 11
Mathematics