The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is

  • [JEE MAIN 2022]
  • A

    $8$

  • B

    $3$

  • C

    $5$

  • D

    $0$

Similar Questions

If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be

Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?

$I$. It has at least one negative root.

$II$. It has at least one positive root.

$III$. Both its roots are real.

  • [KVPY 2013]

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.

$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

($1$) $a_{12}=$

$[A]$ $a_{11}-a_{10}$  $[B]$ $a_{11}+a_{10}$  $[C]$ $2 a_{11}+a_{10}$   $[D]$ $a_{11}+2 a_{10}$

($2$) If $a_4=28$, then $p+2 q=$

$[A] 21$   $[B] 14$   $[C] 7$    $[D] 12$

 answer the quetion ($1$) and ($2$)

  • [IIT 2017]

Let $p, q$ and $r$  be real numbers $(p \ne q,r \ne 0),$ such that the roots of the equation $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to .

  • [JEE MAIN 2018]

If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is