- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
Let $\alpha$ and $\beta$ be the two disinct roots of the equation $x^3 + 3x^2 -1 = 0.$ The equation which has $(\alpha \beta )$ as its root is equal to
A
$x^3 -3x -1 =0$
B
$x^3 -3x^2 + 1 = 0$
C
$x^3 + x^2 -3x + 1 = 0$
D
$x^3 + x^2 + 3x -1 = 0$
Solution
Let ramining root is $\mathrm{r}$
then $\alpha \beta \gamma=1$ so $\alpha \beta=\frac{1}{\gamma}$
so req. eq. is $\frac{1}{x^{3}}+\frac{3}{x^{2}}-1=0$
$=1+3 \mathrm{x}-\mathrm{x}^{3}=0$ $ \Rightarrow \boxed{{{\text{x}}^3} – 3{\text{x}} – 1 = 0}$
Standard 11
Mathematics