- Home
- Standard 12
- Mathematics
Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=[x]$ for $x \in[5,9]$
Solution
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=[x]$ for $x \in[5,9]$
It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=5$ and $x=9$
$\Rightarrow f(x)$ is not continuous in $[5,9]$
Also $f(5)=[5]=5$ and $f(9)=[9]=9$
$\therefore f(5) \neq f(9)$
The differentiability of $f$ in $(5,9)$ is checked as follows.
Let $\mathrm{n}$ be an integer such that $n \in(5,9)$
The left hand limit limit of $f$ at $x=n$ is.
$\mathop {\lim }\limits_{x \to 0'} \frac{{f(n + h) – f(n)}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{[n + h] – [n]}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{n – 1 – n}}{h} = \mathop {\lim }\limits_{x \to 0'} 0 = 0$
The right hand limit of $f$ at $\mathrm{x}=\mathrm{n}$ is,
$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) – f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] – [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n – n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$
Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$
$\therefore f$ is not differentiable in $(5,9).$
It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.
Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9].$
Similar Questions
Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:
$x=-1$ | $x=0$ | $x=2$ | |
$f(x)$ | $3$ | $6$ | $0$ |
$g(x)$ | $0$ | $1$ | $-1$ |
In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)
$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$
$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$
$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$