5. Continuity and Differentiation
medium

जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?

$f(x)=[x]$ के लिए $x \in[5,9]$

Option A
Option B
Option C
Option D

Solution

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=5$ and $x=9$

$\Rightarrow f(x)$ is not continuous in $[5,9]$

Also $f(5)=[5]=5$ and $f(9)=[9]=9$

$\therefore f(5) \neq f(9)$

The differentiability of $f$ in $(5,9)$ is checked as follows.

Let $\mathrm{n}$ be an integer such that $n \in(5,9)$

The left hand limit limit of $f$ at $x=n$ is.

$\mathop {\lim }\limits_{x \to 0'} \frac{{f(n + h) – f(n)}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{[n + h] – [n]}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{n – 1 – n}}{h} = \mathop {\lim }\limits_{x \to 0'} 0 = 0$

The right hand limit of $f$ at $\mathrm{x}=\mathrm{n}$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) – f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] – [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n – n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$

Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$

$\therefore f$ is not differentiable in $(5,9).$

It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9].$

Standard 12
Mathematics

Similar Questions

मान लीजिए कि $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ और $g :[0, \infty) \rightarrow R$ ऐसे फलन हैं कि

$f(0)=g(0)=0,$

$\psi_1( x )= e ^{- x }+ x , \quad x \geq 0,$

$\psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0,$

$f( x )=\int_{- x }^{ x }\left(|t|- t ^2\right) e ^{- t ^2} dt , x >0$

और

$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$

($1$) निम्न कथनों में से कौन सा सत्य है ?

$(A)$ $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$

$(B)$ प्रत्येक $x >1$ के लिए, एक ऐसा $\alpha \in(1, x )$ विद्यमान है जिसके लिए $\psi_1( x )=1+\alpha x$ है।

$(C)$ प्रत्येक $x >0$ के लिए, एक ऐसा $\beta \in(0, x )$ विद्यमान है जिसके लिए $\psi_2( x )=2 x \left(\psi_1(\beta)-1\right)$ है।

$(D)$ अंतराल $\left[0, \frac{3}{2}\right]$ में $f$ एक वर्धमान फलन (increasing function) है।

($2$) निम्न कथनों में से कौन सा सत्य है?

$(A)$ सभी $x >0$ के लिए, $\psi_1( x ) \leq 1$ है।

$(B)$ सभी $x >0$ के लिए, $\Psi_2( x ) \leq 0$ है।

$(C)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$ है।

$(D)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $g ( x ) \leq \frac{2}{3} x ^3-\frac{2}{5} x ^5+\frac{1}{7} x ^7$ है।

hard
(IIT-2021)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.