ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[5,9]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=5$ and $x=9$

$\Rightarrow f(x)$ is not continuous in $[5,9]$

Also $f(5)=[5]=5$ and $f(9)=[9]=9$

$\therefore f(5) \neq f(9)$

The differentiability of $f$ in $(5,9)$ is checked as follows.

Let $\mathrm{n}$ be an integer such that $n \in(5,9)$

The left hand limit limit of $f$ at $x=n$ is.

$\mathop {\lim }\limits_{x \to 0'} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{x \to 0'} 0 = 0$

The right hand limit of $f$ at $\mathrm{x}=\mathrm{n}$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$

Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$

$\therefore f$ is not differentiable in $(5,9).$

It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9].$

Similar Questions

જો વિધેય $f(x) = {x^3} - 6{x^2} + ax + b$ એ અંતરાલ $[1,\,3]$ માં રોલનું પ્રમેય પાલન કરે છે અને $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$ તો $a =$ ..............

મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .

$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.

ધારો કે  વિધેય $f$ એ  $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને  $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક  $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ;  $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$  $>$ 

  • [JEE MAIN 2020]

$c$ ની કિમત મેળવો કે જેથી વિધેય $f(x) = log{_e}x$ એ અંતરાલ $[1, 3]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે.