- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
hard
If $c$ is a point at which Rolle's theorem holds for the function, $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}^{2}+\alpha}{7 \mathrm{x}}\right)$ in the interval $[3,4],$ where $\alpha \in \mathrm{R},$ then $f^{\prime \prime}(\mathrm{c})$ is equal to
A
$\frac{\sqrt{3}}{7}$
B
$\frac{1}{12}$
C
$-\frac{1}{24}$
D
$-\frac{1}{12}$
(JEE MAIN-2020)
Solution
$\frac{9+\alpha}{21}=\frac{16+\alpha}{28} \Rightarrow \alpha=12$
Also, $f^{\prime}(\mathrm{x})=\frac{7 \mathrm{x}}{\mathrm{x}^{2}+12} \times \frac{\mathrm{x}^{2}-12}{7 \mathrm{x}^{2}}=\frac{\mathrm{x}^{2}-12}{\mathrm{x}\left(\mathrm{x}^{2}+12\right)}$
Hence, $c=2 \sqrt{3}$
Now, $f^{\prime \prime}(c)=\frac{1}{12}$
Standard 12
Mathematics