Explain commutative law for vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the vector $\vec{A}$ and $\vec{B}$. According to Parallelogram of vector addition we get the figure.

Here, $\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{RQ}} ; \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{PQ}}$

Draw a Parallelogram,

From $\Delta \mathrm{OPQ} \quad \overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}$

$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$

From $\Delta$ $ORQ$ $\vec{B}+\vec{A}=\overrightarrow{O R}+\overrightarrow{R Q}$

$=\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{OP}}[\because \overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{PQ}} \text { and } \overrightarrow{\mathrm{RQ}}=\overrightarrow{\mathrm{OP}}]$

$\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{OQ}} \ldots \text { (ii) }$

From $(i)$ and $(ii)$ we get,

$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}$

885-s58

Similar Questions

Given $A =3 \hat{ i }+4 \hat{ j }$ and $B =6 \hat{ i }+8 \hat{ j }$, which of the following statement is correct?

The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is

Two vectors $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ have equal magnitude. The magnitude of $(\overrightarrow{{X}}-\overrightarrow{{Y}})$ is ${n}$ times the magnitude of $(\overrightarrow{{X}}+\overrightarrow{{Y}})$. The angle between $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ is -

  • [JEE MAIN 2021]

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.

Two forces of $12 \,N$ and $8 \,N$ act upon a body. The resultant force on the body has maximum value of........$N$