Explain commutative law for vector addition.
Consider the vector $\vec{A}$ and $\vec{B}$. According to Parallelogram of vector addition we get the figure.
Here, $\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{RQ}} ; \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{PQ}}$
Draw a Parallelogram,
From $\Delta \mathrm{OPQ} \quad \overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}$
$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$
From $\Delta$ $ORQ$ $\vec{B}+\vec{A}=\overrightarrow{O R}+\overrightarrow{R Q}$
$=\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{OP}}[\because \overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{PQ}} \text { and } \overrightarrow{\mathrm{RQ}}=\overrightarrow{\mathrm{OP}}]$
$\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{OQ}} \ldots \text { (ii) }$
From $(i)$ and $(ii)$ we get,
$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}$
Three forces given by vectors $2 \hat{i}+2 \hat{j}, 2 \hat{i}-2 \hat{j}$ and $-4 \hat{i}$ are acting together on a point object at rest. The object moves along the direction
An object of $m\, kg$ with speed of $v\, m/s$ strikes a wall at an angle $\theta$ and rebounds at the same speed and same angle. The magnitude of the change in momentum of the object will be
Two forces $3\,N$ and $2\, N$ are at an angle $\theta$ such that the resultant is $R$. The first force is now increased to $ 6\,N$ and the resultant become $2R$. The value of is ....... $^o$
Which of the following relations is true for two unit vectors $\hat{ A }$ and $\hat{ B }$ making an angle $\theta$ to each other$?$
The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :