Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
Here, we can write:
$|\overrightarrow{ OM }|=|\vec{a}|$
$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$
$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:
$ON \,<\, ( OM + MN )$
$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations we get:
$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have
$ON + MN \,>\, OM$
$ON + OM \,>\, MN$
$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$
$(\because OP = MN )$
$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining above equations, we get:
$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$
$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
Here we have:
$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$
$|\overrightarrow{ OP }|=|\vec{a}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:
$OS \,<\, OP + PS$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|-\vec{b}|$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors act in a straight line but in opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations, we get:
$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
The following relations can be written for the given parallelogram. $OS + PS > OP$
$OS \,>\, OP-PS $
$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$
The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:
||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$
$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors act in a straight line but in the opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining equations , we get:
$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$
Write two properties of vector addition.
Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
Explain commutative law for vector addition.
A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is