Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
Here, we can write:
$|\overrightarrow{ OM }|=|\vec{a}|$
$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$
$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:
$ON \,<\, ( OM + MN )$
$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations we get:
$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have
$ON + MN \,>\, OM$
$ON + OM \,>\, MN$
$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$
$(\because OP = MN )$
$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining above equations, we get:
$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$
$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
Here we have:
$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$
$|\overrightarrow{ OP }|=|\vec{a}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:
$OS \,<\, OP + PS$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|-\vec{b}|$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors act in a straight line but in opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations, we get:
$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
The following relations can be written for the given parallelogram. $OS + PS > OP$
$OS \,>\, OP-PS $
$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$
The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:
||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$
$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors act in a straight line but in the opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining equations , we get:
$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$
Two forces of $12 \,N$ and $8 \,N$ act upon a body. The resultant force on the body has maximum value of........$N$
Three vectors $\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$ and $\overrightarrow{\mathrm{OR}}$ each of magnitude $A$ are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of $x$ is. . . . . . . . .
There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively
Two forces of magnitude $F$ have a resultant of the same magnitude $F$. The angle between the two forces is ........ $^o$