Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?
$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
Here, we can write:
$|\overrightarrow{ OM }|=|\vec{a}|$
$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$
$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:
$ON \,<\, ( OM + MN )$
$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations we get:
$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have
$ON + MN \,>\, OM$
$ON + OM \,>\, MN$
$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$
$(\because OP = MN )$
$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:
$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining above equations, we get:
$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$
$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
Here we have:
$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$
$|\overrightarrow{ OP }|=|\vec{a}|$
In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:
$OS \,<\, OP + PS$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|-\vec{b}|$
$|\vec{a}-\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$
If the two vectors act in a straight line but in opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$
Combining above equations, we get:
$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.
The following relations can be written for the given parallelogram. $OS + PS > OP$
$OS \,>\, OP-PS $
$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$
The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:
||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$
$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$
If the two vectors act in a straight line but in the opposite directions, then we can write:
$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$
Combining equations , we get:
$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$
A body moves due East with velocity $20\, km/hour$ and then due North with velocity $15 \,km/hour$. The resultant velocity..........$km/hour$
Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
A bus is moving on a straight road towards north with a uniform speed of $50\; km / hour$ then it turns left through $90^{\circ} .$ If the speed remains unchanged after turning, the increase in the velocity of bus in the turning process is
The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is
A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$ ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} = - 6\hat i + 4\hat j - 7\hat k$ ${\vec F_4} = - \hat i - 3\hat j - 2\hat k$
Then the particle will move