Establish the following vector inequalities geometrically or otherwise:

$(a)$ $\quad| a + b | \leq| a |+| b |$

$(b)$ $\quad| a + b | \geq| a |-| b |$

$(c)$ $\quad| a - b | \leq| a |+| b |$

$(d)$ $\quad| a - b | \geq| a |-| b |$

When does the equality sign above apply?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

Here, we can write:

$|\overrightarrow{ OM }|=|\vec{a}|$

$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$

$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:

$ON \,<\, ( OM + MN )$

$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations we get:

$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have

$ON + MN \,>\, OM$

$ON + OM \,>\, MN$

$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$

$(\because OP = MN )$

$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining above equations, we get:

$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$

$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

Here we have:

$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$

$|\overrightarrow{ OP }|=|\vec{a}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:

$OS \,<\, OP + PS$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|-\vec{b}|$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|\vec{b}|$

If the two vectors act in a straight line but in opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations, we get:

$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

The following relations can be written for the given parallelogram. $OS + PS > OP$

$OS \,>\, OP-PS $

$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$

The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:

||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$

$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors act in a straight line but in the opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining equations , we get:

$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$

885-s16

Similar Questions

A body moves due East with velocity $20\, km/hour$ and then due North with velocity $15 \,km/hour$. The resultant velocity..........$km/hour$

Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?

$(a)$ $\vec{a}+\vec{b}$

$(b)$ $3 a_x+2 b_y$

$(c)$ $(\vec{a}+\vec{b}-\vec{c})$

A bus is moving on a straight road towards north with a uniform speed of $50\; km / hour$ then it turns left through $90^{\circ} .$ If the speed remains unchanged after turning, the increase in the velocity of bus in the turning process is

  • [AIPMT 1989]

The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is

A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)

${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$            ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$

${\vec F_3} =  - 6\hat i + 4\hat j - 7\hat k$         ${\vec F_4} =  - \hat i - 3\hat j - 2\hat k$

Then the particle will move