Establish the following vector inequalities geometrically or otherwise:

$(a)$ $\quad| a + b | \leq| a |+| b |$

$(b)$ $\quad| a + b | \geq| a |-| b |$

$(c)$ $\quad| a - b | \leq| a |+| b |$

$(d)$ $\quad| a - b | \geq| a |-| b |$

When does the equality sign above apply?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

Here, we can write:

$|\overrightarrow{ OM }|=|\vec{a}|$

$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$

$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:

$ON \,<\, ( OM + MN )$

$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations we get:

$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have

$ON + MN \,>\, OM$

$ON + OM \,>\, MN$

$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$

$(\because OP = MN )$

$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining above equations, we get:

$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$

$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

Here we have:

$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$

$|\overrightarrow{ OP }|=|\vec{a}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:

$OS \,<\, OP + PS$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|-\vec{b}|$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|\vec{b}|$

If the two vectors act in a straight line but in opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations, we get:

$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

The following relations can be written for the given parallelogram. $OS + PS > OP$

$OS \,>\, OP-PS $

$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$

The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:

||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$

$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors act in a straight line but in the opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining equations , we get:

$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$

885-s16

Similar Questions

If $A$ and $B$ are two vectors such that $| A + B |=2| A - B |$ the angle between vectors $A$ and $B$ is

Figure shows three vectors $p , q$ and $r$, where $C$ is the mid point of $A B$. Then, which of the following relation is correct?

Which of the following relations is true for two unit vectors $\hat{ A }$ and $\hat{ B }$ making an angle $\theta$ to each other$?$

  • [JEE MAIN 2022]

The three vectors $\overrightarrow A = 3\hat i - 2\hat j + \hat k,\,\,\overrightarrow B = \hat i - 3\hat j + 5\hat k$ and $\overrightarrow C = 2\hat i + \hat j - 4\hat k$ form

If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then