Establish the following vector inequalities geometrically or otherwise:

$(a)$ $\quad| a + b | \leq| a |+| b |$

$(b)$ $\quad| a + b | \geq| a |-| b |$

$(c)$ $\quad| a - b | \leq| a |+| b |$

$(d)$ $\quad| a - b | \geq| a |-| b |$

When does the equality sign above apply?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

Here, we can write:

$|\overrightarrow{ OM }|=|\vec{a}|$

$|\overrightarrow{ MN }|=|\overrightarrow{ OP }|=|\vec{b}|$

$|\overrightarrow{ ON }|=|\vec{a}+\vec{b}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have:

$ON \,<\, ( OM + MN )$

$|\vec{a}+\vec{b}| \,<\, |\vec{a}|+|\vec{b}|$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations we get:

$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(b)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $OMNP$, as shown in the given figure.

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OMN$, we have

$ON + MN \,>\, OM$

$ON + OM \,>\, MN$

$|\overrightarrow{ ON }|\,>\,|\overrightarrow{ OM }-\overrightarrow{ OP }|$

$(\because OP = MN )$

$|\vec{a}+\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining above equations, we get:

$|\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}||$

$(c)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

Here we have:

$|\overrightarrow{ OR }|=|\overrightarrow{ PS }|=|\vec{b}|$

$|\overrightarrow{ OP }|=|\vec{a}|$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\Delta$ $OPS$, we have:

$OS \,<\, OP + PS$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|-\vec{b}|$

$|\vec{a}-\vec{b}|  \,<\,  |\vec{a}|+|\vec{b}|$

If the two vectors act in a straight line but in opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}|$

Combining above equations, we get:

$|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$

$(d)$ Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram $PORS$, as shown in the given figure.

The following relations can be written for the given parallelogram. $OS + PS > OP$

$OS \,>\, OP-PS $

$|\vec{a}-\vec{b}|\,>\,|\vec{a}|-|\vec{b}|$

The quantity on the $LHS$ is always positive and that on the $RHS$ can be positive or negative. To make both quantities positive, we take modulus on both sides as:

||$\vec{a}-\vec{b}||\,>\,|| \vec{a}|-| \vec{b}||$

$|\vec{a}-\vec{b}|\,>\,|| \vec{a}|-| \vec{b}||$

If the two vectors act in a straight line but in the opposite directions, then we can write:

$|\vec{a}-\vec{b}|=|| \vec{a}|-| \vec{b}||$

Combining equations , we get:

$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b} |$

885-s16

Similar Questions

In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$

  • [JEE MAIN 2021]

Prove the associative law of vector addition.

Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $

The resultant force of $5 \,N$ and $10 \,N$ can not be ........ $N$

On an open ground, a motorist follows a track that turns to his left by an angle of $60^{°}$ after every $500\; m$. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.